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Accurate simulation of turbulent flows is of crucial importance in many branches of science and engineering.

Direct numerical simulation (DNS) provides the highest fidelity means of capturing all intricate physics of tur-

bulent transport. However, the method is computationally expensive because of the wide range of turbulence

scales that must be accounted for in such simulations. Large eddy simulation (LES) provides an alternative.

In such simulations, the large scales of the flow are resolved, and the effects of small scales are modelled. Re-

construction of the DNS field from the low-resolution LES is needed for a wide variety of applications. Thus

the construction of super-resolution methodologies that can provide this reconstruction has become an area

of active research. In this work, a new physics-guided neural network is developed for such a reconstruc-

tion. The method leverages the partial differential equation that underlies the flow dynamics in the design

of spatio-temporal model architecture. A degradation-based refinement method is also developed to enforce

physical constraints and to further reduce the accumulated reconstruction errors over long periods. Detailed

DNS data on two turbulent flow configurations are used to assess the performance of the model.
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1 INTRODUCTION

Direct numerical simulation (DNS) of the Navier–Stokes equations is a brute-force computa-

tionalmethod and is themethodwith the highest reliability for capturing turbulence dynamics [21].

The computational cost of such simulations is very expensive for flows with high Reynolds num-

bers. Large eddy simulation (LES) is a popular alternative, concentrating on the larger scale

energy-containing eddies and filtering the small scales of transport [44]. In this way, LES can be

conducted on coarser grids as compared to DNS, but obviously with less fidelity [40].
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Machine learning, including super-resolution (SR) methods [41], have been advocated as

a means of reconstructing highly resolved DNS from LES data. These methods have shown

tremendous success in reconstructing high-resolution data in various commercial applications.

The majority of current SR models use convolutional network layers (CNNs) [2] to extract

representative spatial features and transform them through complex non-linear mappings to re-

cover high-resolution images. Starting from the end-to-end convolutional SRCNN model [15],

several investigators have explored the addition of other structural components such as skip-

connections [1, 12, 47, 47, 61, 62], channel attention [61], adding adversarial training objectives

[10, 11, 28, 32, 46, 50, 51, 53], and more recently, Transformer [42]-based SR methods [17, 18, 34,

37, 49, 59, 63].

Given their success in computer vision, SR methods are becoming increasingly popular in tur-

bulence reconstruction [14, 19, 20, 35, 51, 57]. Despite their popularity, these methods face some

limitations when it comes to representing continuous flow dynamics in the spatial and temporal

fields using discrete data samples. Consequently, they can learn spurious patterns between sparse

observations, which often lack generalizability. Additionally, the training of SR models is hindered

by the scarcity of high-fidelity DNS data due to the required high computational cost of such

simulations.

In this work, a novel method termed the “continuous networks using differential equa-
tions” (CNDE) is developed to improve the SR reconstruction. This development is by leveraging

the underlying physical relationships to guide the learning of generalizable spatial and temporal

patterns in the reconstruction process. The method consists of three components: the Runge–
Kutta transition unit (RKTU), the temporally enhancing layer (TEL), and degradation-based
refinement. The RKTU structure is designed based on the governing partial differential equa-
tions (PDEs) and is used for capturing continuous spatial and temporal dynamics of turbulent

flows. The TEL structure is designed based on the long-short-termmemory (LSTM) [24] model

and is responsible for capturing long-term temporal dependencies. The degradation-based refine-

ment is to adjust the reconstructed data by enforcing consistency with physical constraints.

Model appraisal is made by considering detailed datasets pertaining to two turbulent flow con-

figurations: (1) a forced isotropic turbulent (FIT) flow [38] and (2) the Taylor–Green vortex
(TGV) flow [5]. The results of the consistency assessments demonstrate the capability of the CNDE

in terms of the reconstruction performance over space and time. The effectiveness of each compo-

nent of the methodology is demonstrated qualitatively and quantitatively.

2 RELATEDWORK

2.1 Super-Resolution

Single image super-resolution (SISR) via deep learning has been the subject of many inves-

tigations in computer vision. These methods derive their power primarily from the utilization

of convolutional network layers [2], which extract spatial texture features and transform them

through complex non-linear mappings to recover high-resolution data. One of the earliest SRmeth-

ods for SISR is SRCNN [15], which learns an end-to-end mapping between coarse-resolution and

high-resolution images by employing a series of convolutional layers. Another scheme is the skip-

connection layers [1, 12, 45, 47, 62], which enable the bypassing of abundant low-frequency infor-

mation and emphasize the relevant information to improve the stability of the optimization process

in deep neural networks. Several investigators have explored the adversarial training objective by

using the generative adversarial network (GAN) for SISR. For example, the SRGANmodel [32]

stacks the deep residual network to build a deeper generative network for image super-resolution

and also introduces a discriminator network to distinguish between reconstructed images and real
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images using an adversarial loss function. The ultimate goal is to train the generative network in a

way that the reconstructed images cannot be easily distinguished by the discriminator. One major

advantage of SRGAN is that the discriminator can help extract representative features from high-

resolution data and enforce such features in the reconstructed images. Several variants of SRGAN

are given in References [10, 11, 28, 46, 50, 51, 53].

The Transformer [48] has revolutionized natural language processing (NLP) by introduc-

ing self-attention mechanisms, allowing it to efficiently process long-range dependencies in the

sequences of data. This method can effectively capture contextual information from the entire

input sequence, leading to significant advancements in various NLP tasks like machine transla-

tion, sentiment analysis, and so on. The Transformer has also been introduced into the SISR prob-

lem [17, 18, 34, 37, 42, 49, 59, 63]. For example, Yang et al. [59] developed the TTSR model, which

uses a learnable texture extractor to extract textures from low-resolution images and reference

high-resolution (HR) images to recover target HR images. Lu et al. [37] developed the ESRT

model, which optimizes the original Transformer to achieve competitive reconstruction perfor-

mance with low computational cost.

2.2 Super-Resolution for Turbulent Flows

There is a significant interest in developing SR techniques for high-resolution flow reconstruc-

tions. Fukami et al. [19, 20, 35] created an improved CNN-based hybrid DSC/MS model to explore

multiple scales of turbulence and capture the spatio-temporal turbulence dynamics. Liu et al. [35]

developed another CNN-based model MTPC to simultaneously include spatial and temporal in-

formation to fully capture features in different time ranges. Xie et al. [57] introduced tempoGAN,

which augments a GAN model with an additional discriminator network along with new loss

functions that preserve temporal coherence in the generation of physics-based simulations of fluid

flow. Deng et al. [14] demonstrated that both SRGAN and ESRGAN [51] can produce good recon-

structions. Yang et al. [60] created an FSR model based on a back-projection network to achieve

three-dimensional (3D) reconstruction. Xu et al. [58] introduced a Transformer-based SR method

to build the SRTT model for capturing small-scale details of turbulent flow.

2.3 Physics-guided Machine Learning

Recent studies have shown promise in integrating physics into machine learning models for im-

proved predictive performance [56]. These methods typically enforce physics in the loss func-

tion [8, 13, 22, 23, 26, 43] or use simulated data for pre-training and augmentation [7, 9, 23, 25, 36].

Hanson et al. [22] introduced ecological principles as physical constraints into the loss function

to improve the lake surface water phosphorus prediction. Karpatne et al. [13] developed a hybrid

machine learning and physics model to guarantee that the density of water at a lower depth is

always greater than the density at any depth above. Jia et al. [26] and Read et al. [43] extended

this idea by including an additional penalty for the violation of the energy conservation law. In the

flow data reconstruction, Chen et al. [8] constructed a PGSRN method to enforce zero divergences

of the velocity field in incompressible flows. Despite the promise of these methods, they may lead

to slow convergence in optimization and performance degradation, especially when the physical

relationships are complex or have uncertain parameters.

A means of imposing the physics is by considering the PDEs that govern the physical phenom-

ena. In some cases, however, direct integration of the governing PDEs using standard numerical

methods [54] can become prohibitively expensive. An alternative is to solve PDEs via neural op-

erators [4, 16, 33]. For example, Li et al. [33] introduced the Fourier neural operator (FNO)
to model PDEs for learning the mappings between infinite-dimensional spaces of functions us-

ing the integral operator. The integral operator of this approach is restricted to convolution and
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Fig. 1. The overall structure of the CNDE method.

instantiated through a linear transformation in the Fourier domain. However, the major limitation

of neural operators for flow data reconstruction lies in their lack of explicit knowledge about the

specific form of the underlying PDE (Naiver–Stokes equation). Neural operators directly learn the

relation between input data and outputs without incorporating the intrinsic structure and physics

encoded in the PDE. This can lead to inefficiencies and challenges in effectively capturing complex

flow dynamics. An alternative direction is to embed the physics equations or relationships in the

modeling structure [3, 29, 39]. One such example is the encoding of the Navier–Stokes equation in

a recurrent unit, as demonstrated in our previous work [3]. However, this method may accumulate

errors in long-term predictions, and it does not consider the use of LES data in reconstructing DNS

data within the recurrent unit.

3 PROBLEM UNDER INVESTIGATION

In this work, the transport of unsteady, three-dimensional turbulent flows is the subject of main

consideration. In all cases, the flow is assumed to be Newtonian and incompressible with a con-

stant density. In the formulation, the space coordinate is identified by the vector x ≡ x , y, z,
and the time is denoted by t . The velocity field is denoted by V(x, t ), with its three components,

u (x, t ), v (x, t ), w (x, t ), along the three flow directions x , y, z, respectively. The pressure, the den-
sity, and the dynamic viscosity are denoted by p (x, t ), ρ (x, t ), and ν , respectively. The latter two
are assumed constant. The (dummy) parameters Q(x, t ) (as a vector), and/or Q (as a scalar) are

used to denote a transport variable.

All of the flows considered are statistically homogeneous. High-resolution DNS and lower-

resolution LES data are considered on Nx × Ny × Nz , andMx ×My ×Mz grid points, respectively.

A box filter [27] is employed to create the LES data from the original DNS. All of the statistical

averages, including the Reynolds-averaged values are obtained by data ensembled over the entire

domain. In this way, the ensemble averages, denoted by an over-bar are defined by

Q(t) =
1

Nx × Ny × Nz

Nx∑
i

Ny∑
j

Nz∑
k

Q(i, j,k, t ), (1)

suitable for homogeneous flows. In the training process, the available DNS data are at a regular

time interval δ , asQd = {Qd (t )} within the time {t0, t0+δ , . . . , t0+Kδ }. The objective is to predict
high-resolution DNS data after the historical data, at time {t0+ (K +1)δ , . . . , t0+Mδ }. The variable
Ql (x ,y, z, t ) represents the low-resolution LES data at timestep t . Since the LES data can be created
at a lower computational cost, they are used for both training and testing periods and at a higher

frequency. The variable Ql = {Ql (t )} denotes LES data within the time range [t0, t0 +Mδ].
The CNDE framework consists of two structural components: the RKTU, and the TEL. The train-

ing is done in two phases: supervised super-resolution training, and degradation-based refinement.

These are shown in Figure 1 and are described in order below.
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Fig. 2. The RKTU based on Naiver–Stokes equation for reconstructing turbulent flow data in the spatio-

temporal field.Qs,n andQt,n denote the spatial and temporal derivatives, respectively, at each intermediate

timestep.

3.1 Runge–Kutta Transition Unit

The datasets Q pertaining to turbulent flows consist of the transport variables that interact with

each other and evolve temporally and spatially. The traditional temporal models, e.g., LSTM [24],

rely on large and consecutive training samples to capture the underlying patterns over time. How-

ever, the amount of high-fidelity DNS data is often limited. The RKTU structure is developed for

reconstructing flow variables over a long period, given an initial DNS sampleQd at t , and frequent
low-resolution LES data samples Ql . The prediction follows an auto-regressive process in which

the predicted DNS Q̂
d
(x ,y, z, t ) at time t , and frequent LES data Ql from the current time to the

next interval [t ,t + δ] are used to predict the DNS at next timestep Q̂
d
(x ,y, z, t + δ ).

The RKTU is based on the RungeâĂŞKutta (RK) discretization method [6]. The principal idea

is to leverage the continuous physical relationship described by the underlying PDE to bridge the

gap between the discrete data samples and the continuous flow dynamics. The scheme can be

applied to any dynamical systems governed by deterministic PDEs. Consider the PDE of the target

variables Q as expressed by

Qt = f(t ,Q;θ ), (2)

where Qt denotes the temporal derivative of Q, and f(t ,Q;θ ) is a non-linear function (parameter-

ized by coefficient θ ) that summarizes the current value of Q and its spatial variations. The turbu-

lence data follow the Navier–Stokes equation for an incompressible flow. Thus, for Q ≡ V(x, t ),

∇ · Q = 0,

f(Q) = − 1

ρ
∇p + νΔQ − (Q · ∇)Q. (3)

The term ∇ denotes the gradient operator and Δ = ∇ ·∇ on each of the components of the velocity.

The independent variable t is omitted in the function f(·), because f(Q) in the Navier–Stokes equa-
tion is for a specific time t (same with t in Qt ). Figure 2 shows the overall structure of the method

and involves a series of intermediate states {Q(t , 0),Q(t , 1),Q(t , 2), . . . ,Q(t ,N )}. The temporal

gradients are estimated at these states {Qt,0,Qt,1,Qt,2, . . . ,Qt,N }. Starting from Q(t , 0) = Q(t ),
the RKTU estimates the temporal gradient as Qt,0 and then moves Q(t ) toward the gradient direc-
tion to create the next intermediate stateQ(t , 1). The process is repeated for N intermediate states.

For the fourth-order RK method, as employed here, N = 3.
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For the starting data pointQ(t ), an augmentation mechanism is adopted by combining the DNS

and LES data, Q(t ) = W dQd (t ) +W lQl (t ), whereW d andW l are trainable model parameters,

and Ql (t ) is the up-sampled LES data with the same resolution as DNS. The RKTU estimates the

first temporal gradient Qt,0 = f(Q(t )) using the Navier–Stokes equation and computes the next

intermediate state variable Q(t , 1) by moving the flow data Q(t ) along the direction of temporal

derivatives. Given frequent LES data, the intermediate states Q(t ,n) are also augmented by using

LES data Ql (t ,n), as Q(t ,n) =W dQ(t ,n) +W lQl (t ,n), and they follow the same process to move

Q(t ) along the estimated gradient Qt,n to compute the next intermediate states Q(t ,n + 1),

Q(t , 1) = Q(t ) + δ
Qt,0

2
,

Q(t , 2) = Q(t ) + δ
Qt,1

2
,

Q(t , 3) = Q(t ) + δQt,2.

(4)

The temporal derivative Qt,3 is then computed from the last intermediate state by f(Q(t , 3)).

According to Equation (4), the intermediate LES dataQl (t ,n) are selected asQl (t , 1) = Ql (t +δ/2),
Ql (t , 2) = Ql (t + δ/2), and Ql (t , 3) = Ql (t + δ ). Finally, RKTU combines all the intermediate

temporal derivatives as a composite gradient to calculate the final prediction of next step flow

data Q̂RKTU (t + δ ),

Q̂RKTU (t + δ ) = Q(t ) +
N∑
n=0

wnQt,n , (5)

where {wn }Nn=1 are the trainable model parameters.

The RKTU requires the temporal derivatives in the Navier–Stokes equation. The RKTU esti-

mates the temporal derivatives through the function f(·). According to Equation (3), the evaluation
of f(·) requires explicitly estimation of the first-order and second-order spatial derivatives. One of

the most popular approaches for evaluating spatial derivatives is through finite differencemeth-
ods (FDMs) [54]. However, the discretization in FDMs can cause larger errors for locations with

complex dynamics. The RKTU structure, as depicted in Figure (2), utilizes CNN layers to replace

the FDMs. The CNNs have the inherent capability to learn additional non-linear relationships from

data and capture the spatial derivatives required in the Navier–Stokes equation. After estimating

the first-order and second-order spatial derivatives, they are used in Equation (3) to obtain the

temporal derivative Qt,n .

The padding strategies for CNNs also need to be considered. Standard padding strategies (e.g.,

zero padding) do not satisfy the spatial boundary conditions of the flows considered here. These

conditions describe how the flow data interact with the external environment. With the assump-

tion of homogeneous turbulence, periodic boundary conditions are imposed on all three flow di-

rections. Thus, periodic data augmentation is made for each of the six faces (of the 3D cubic data)

with an additional two layers of data before feeding it to the model.

3.2 Temporally Enhancing Layer

The RKTU can capture the data in the spatial and temporal field between a pair of consecutive

data points, but it may cause large reconstruction errors in the long-time prediction if the time

interval δ is large. Temporal models, such as LSTM [24], and temporal convolutional network
(TCN) [31] are widely used to capture the long-term dependencies in time-series prediction. In this

case, the LSTM model is incorporated in a TEL to further enhance the RKTU to capture long-term

temporal dependencies. This TEL structure can be replaced by other existing temporal models
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Fig. 3. Details of CNDE for reconstructing Q. Parts (a) and (b) depict two different approaches to incorpo-

rating the TEL component. The solid lines represent the forwarding process in CNDE-based methods. The

blue dashed lines represent the reconstructed flow data Q̂
d
as used as input for the reconstruction of the

next timestep.

such as TCN. Figure 3 shows two different approaches for integrating the TEL structure with the

RKTU structure. In the first enhancing method shown in Figure 3(a), the RKTU output flow data

Q̂RKTU are fed to the TEL structure, which is essentially an LSTM layer. After further processing

through the TEL structure, the model produces the reconstructed flow data Q̂
d
(t ). Given the true

DNS dataQd (t ) in the training set, the reconstructed loss Lrecon can be expressed using themean
squared error (MSE) loss,

Lrecon =
∑
t

MSE(Q̂
d
(t ),Qd (t )). (6)

The second method uses the TEL structure to complement the output of the RKTU structure,

i.e., learning the residual of the RKTU output, as shown in Figure 3(b). In the training process,

both true DNS data Qd at time {t , . . . t + (K − 1)δ } and RKTU output Q̂RKTU are used to produce

the corresponding temporal output feature Q̂TEL at time {t + δ , . . . , t + Kδ }. Then in the testing

process, this method uses only the initial true DNS data Qd in time t + Kδ and the next series of

predicted DNS data Q̂
d
as the DNS input to generate Q̂TEL. Finally, this method adopts a linear

combination to combine the RKTU output Q̂RKTU and corresponding TEL output Q̂TEL to obtain
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the final reconstructed output Q̂
d
, which can be represented as

Q̂
d
(t ) = wt

r Q̂RKTU (t ) +w
t
t Q̂TEL (t ), (7)

wherewt
r andw

t
t are trainable parameters. Finally, the reconstructed loss Lrecon can also be repre-

sented by Equation (6).

3.3 Physical Constraints and Refinements

3.3.1 Physical Constraints. For a more accurately reconstructed field, some additional con-

straints are imposed on the data. Two such constraints are imposed by considering the consistency

of (i) themean velocity field and (ii) the kinetic energy of turbulence. For (i), the loss functionLmean

between reconstructed data Q̂
d
and true DNS data Qd is considered,

Lmean = |Qd − Q̂d |. (8)

For (ii), the kinetic energy,], defined as

K = 1

2
(u2 +v2 +w2), (9)

is monitored. For this, the loss function is Lkinetic is

Lkinetic = |K (Qd ) − K (Q̂
d
) |, (10)

where K (Qd ) and K (Q̂
d
) denote the kinetic energy of Qd and Q̂

d
, respectively. The overall loss

function L is

L = α0Lrecon + α1Lmean + α2Lkinetic, (11)

is considered in whichα0,α1, andα2 represent the hyperparameters to control the balance amongst

the three constituents.

3.3.2 Degradation-based Refinement. As shown in Figure 3, the scheme preserves the physical

constraints in the training process and also employs these constraints in the degradation-based

test-time refinement process. The objective is to mitigate accumulated errors and structural dis-

tortions over long-term prediction by enforcing the physical consistency. The refinement process

includes the same set of the loss function: the degradation loss Ldeg, the equal-mean loss L′mean,

and the kinetic energy loss L′
kinetic

loss. Since it is not possible to access true DNS data during the

testing phase, the difference between true DNS Qd and the reconstructed data Q̂
d
cannot be di-

rectly minimized. Thus, to protect the overall structure of flow data, a reverse degradation process

is employed by using a separate convolutional network for mapping reconstructed data Q̂
d
to the

corresponding low-resolution LES data Q̂
l
. The loss Ldeg between Q̂

l
and real LES data Ql is

Ldeg = MSE(Q̂
l
,Ql ). (12)

Also, the mean values from the true DNS cannot be used in the equal-mean loss function. There-

fore, the corresponding values from the LES data are used as an approximation. As such, the equal-

mean loss L′mean between the reconstructed flow data Q̂
d
and the true LES data Ql can be directly

minimized,

L′mean = |Ql − Q̂d |. (13)

Similarly, the exact kinetic energy of flow data is not available during the testing period. These

values are taken from the DNS in the training data,

L′kinetic = |K (Q̂
d
) − K̃ |. (14)
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The final refinement loss function is in the same format L′ = α0Ldeg + α1L′mean + α2L′kinetic.
The loss L′ is adopted to directly adjust the state of reconstructed data for 10 epochs at each

test-time timestep and yield an improved reconstruction performance.

4 MODEL APPRAISAL

4.1 Flows Considered

To assess the performance of the proposed methodology, the datasets pertaining to two turbulent

flows are considered: a FIT flow [38] and the TGV [5] flow. In both cases, the mean velocity is zero,

V(t ) = 0, and the Reynolds number is large enough for the flow to exhibit turbulent characteristics.

The FIT data [38] are publicly available from the JohnsHopkins University. This dataset contains

the original DNS of forced isotropic turbulence on a 1, 024× 1, 024× 1, 024 collocation points. The

flow is forced by injecting energy into the flow at small waver numbers. The DNS data contain

5, 024 timesteps with time intervals of 0.002 s and includes both the velocity and the pressure

fields. The original DNS data are downsampled to 64 × 64 × 64 grids. The LES data are created on

16 × 16 × 16 grids. The loss L′kinetic is not considered for this flow.

The TGV [5] is an incompressible flow. The evolution of the TGV includes vorticity stretching

and the consequent production of small-scale, dissipating eddies. A box flow, with a cubic periodic

domain of [−π ,π ] (in all three directions), is considered, with the following initial conditions:

u (x ,y, z, 0) = sin(x ) cos(y) cos(z),

v (x ,y, z, 0) = − cos(x ) sin(y) cos(z),
w (x ,y, z, 0) = 0.

(15)

The LES and DNS resolutions are 32 × 32 × 65 and 128 × 128 × 65, respectively. Both LES and

DNS data are produced along the 65 equally spaced grid points along the z axis.

4.2 Comparative Assessments

4.2.1 CNDE Method and Baselines. The performance of the CNDE method is evaluated and

compared with several existing methods for image SR and turbulent flow downscaling. Specifi-

cally, the proposed CNDE-based methods, CNDE-E (enhancing-based TEL method) and CNDE-R

(residual learning-based TELmethod),1 were implemented. Additionally, four popular SR methods,

namely SRCNN [15], RCAN [61], HDRN [47], and SRGAN [32]; two popular dynamic fluid down-

scaling methods, DCS/MS [19] and FSR [60]; and FNO [33] are used as baselines. To better verify

the effectiveness of each of the model’s components, four additional baselines are included: con-
volutional transition network (CTN), RKTU, CNDEp-E, and CNDEp-R. The CTN is created by

combining SRCNN and LSTM [24]. CNDEp-E and CNDEp-R are similar to CNDE-E and CNDE-R,

but they are created without using the degradation-based refinement process.

By comparing the CTN with the RKTU, the objective is to demonstrate the advantages of the

RKTU in spatio-temporal DNS reconstruction. By comparing the RKTU with the CNDEp-based

methods, the goal is to show the effectiveness of introducing the TEL structure. The advantages

of the refinement process are demonstrated by comparing the CNDEp-based and CNDE-based

methods.

4.2.2 Experimental Designs. The proposedmethods and the baselines are tested on both the FIT

and the TGV datasets. The models are trained by using the FIT data from a consecutive one-second

period with a time interval δ = 0.02 s and a total of 50 timesteps and then apply the trained model

into the next 0.4-s period (a total of 20 timesteps) for performance evaluation. For the TGV dataset,

1The source code is at https://drive.google.com/drive/folders/15PhF_q1HcJpXZIvxnR1mMbd8hbkxBbT_?usp=share_link
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the models use a consecutive 40-s period with a time interval δ = 2 s for training and the next 40

s of data for testing.

The performance of DNS reconstruction is evaluated by using two different metrics, structural
similarity index measure (SSIM) [52] and dissipation [55]. SSIM is used to appraise the similar-

ity between reconstructed data and target DNS on three aspects—luminance, contrast, and overall

structure. The higher value of SSIM indicates better reconstruction performance. The dissipation

operator is used to assess the performance of capturing the flow gradients. The dissipation of each

of the three components of the velocity vector (u,v , andw) are evaluated. The dissipation operator

is defined by

χ (Q ) ≡ ∇Q · ∇Q =
(
∂Q

∂x

)2
+

(
∂Q

∂y

)2
+

(
∂Q

∂z

)2
. (16)

The dissipation is used to measure the difference of flow gradient between the true DNS and

generated data. This is represented by |χ (Qd ) − χ (Q̂d ) |. The lower value of this difference indi-

cates better performance. Compared with our previous work [3], the performance assessment is

expanded by considering a new pixelwise evaluation metric (dissipation) and a physical validation

method based on the kinetic energy.

4.2.3 Environmental Settings and Implementation Details. The method is implemented via Ten-

sorflow 2with a GTX3080 GPU. Themodel is first trained in 500 epochs with ADAMoptimizer [30]

from an initial learning rate of 0.001. In the refinement step, the learning rate is lowered to 0.0005,
and the training rate is iterated by 10 epochs. All the hidden variables and gating variables are in

32 dimensions. The values of α0, α1, and α2 are set as 1, 0.1, and 0.1, respectively.

4.3 Reconstruction Performance

4.3.1 Quantitative Results. Table 1 and Table 2 summarize the average performance over the

first 10 timesteps in the testing phase on both the FIT dataset and the TGV dataset. Compared with

the baselines, CNDE-based methods perform the best in both evaluations obtaining the highest

SSIM value and lowest dissipation difference. Several observations are made: (1) When comparing

the CNDE-based methods with SR baselines, the DCS/MS, FNO, and FSR models, it is observed

that these baseline methods cannot recover the overall flow well and get worse performance in

terms of SSIM and dissipation difference. (2) Compared with the SRCNN, the CTN, which uses

the LSTM model, shows a significant improvement in both evaluations. This confirms the effec-

tiveness of a temporal model (e.g., LSTM) in capturing temporal dependency. (3) The comparison

among the CTN, RKTU, CNDEp-based methods, and CNDE-based methods, indicates significant

improvements by incorporating each of the three components (RKTU, TEL, and refinement). In

particular, the refinement method brings the most significant improvement in terms of SSIM and

dissipation differences.

4.3.2 Temporal Analysis. In the temporal analysis of the FIT dataset, the performance for re-

construction is measured for each step during a 0.4-s period (20 timesteps) in the testing phase.

The performance change using the SSIM and the dissipation difference is shown in Figures 4

and 5, respectively. These figures indicate that (1) with larger time intervals between training

data and prediction data, the performance becomes worse. In general, the CNDE-based methods

are more stable over a long period and show a much better performance than other methods.

(2) The temporal model (e.g., LSTM) results in significant improvements in long-term predictions.

(3) The CNDE-based methods outperform the CNDEp-based methods, which demonstrate the ef-

fectiveness of test-time refinement in reducing the prediction bias in long-term prediction. (4)

The CNDEp-based methods yield a better performance after the 5th timesteps compared with the
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Table 1. Reconstruction Performance (Measured by SSIM, and

Dissipation Difference) on (u,v,w ) Channels by Different

Methods in the FIT Dataset

Method SSIM Dissipation Difference

SRCNN (0.859, 0.851, 0.851) (0.301, 0.303, 0.303)

RCAN (0.861, 0.859, 0.859) (0.299, 0.301, 0.300)

HDRN (0.861, 0.860, 0.862) (0.298, 0.298, 0.297)

FSR (0.861, 0.860, 0.861) (0.299, 0.297, 0.296)

DCS/MS (0.861, 0.862, 0.862) (0.298, 0.295, 0.294)

SRGAN (0.862, 0.861, 0.863) (0.296, 0.294, 0.294)

FNO (0.874, 0.875, 0.874) (0.265, 0.266, 0.273)

CTN (0.881, 0.880, 0.881) (0.253, 0.254, 0.254)

RKTU (0.898, 0.899, 0.898) (0.260, 0.261, 0.259)

CNDEp-E (0.909, 0.909, 0.907) (0.244, 0.243, 0.245)

CNDEp-R (0.904, 0.905, 0.905) (0.249, 0.248, 0.248)

CNDE-E (0.927, 0.921, 0.922) (0.193, 0.194, 0.197)

CNDE-R (0.921, 0.919, 0.920) (0.196, 0.196, 0.200)

The performance is measured by the average results of the first 10

timesteps.

Table 2. Reconstruction Performance (Measured by SSIM, and

Dissipation Difference) on (u,v,w ) Channels by Different Methods

in the TGV Dataset

Method SSIM Dissipation Difference×10
SRCNN (0.602, 0.603, 0.626) (0.083, 0.087, 0.079)

RCAN (0.627, 0.622, 0.631) (0.073, 0.074, 0.071)

HDRN (0.638, 0.638, 0.641) (0.072, 0.072, 0.068)

FSR (0.646, 0.648, 0.649) (0.070, 0.073, 0.066)

DSC/MS (0.647, 0.649, 0.649) (0.070, 0.071, 0.065)

SRGAN (0.661, 0.658, 0.666) (0.068, 0.067,0.058)

FNO (0.645, 0.646, 0.648) (0.072, 0.071, 0.072)

CTN (0.623, 0.624, 0.627) (0.093, 0.096, 0.087)

RKTU (0.708, 0.708, 0.688) (0.049, 0.046, 0.043)

CNDEp-E (0.724, 0.723, 0.708) (0.046, 0.041, 0.039)

CNDEp-R (0.720, 0.719, 0.701) (0.046, 0.045, 0.040)

CNDE-E (0.938, 0.918, 0.876) (0.031, 0.032, 0.026)

CNDE-R (0.917, 0.909, 0.877) (0.033, 0.034, 0.028)

The performance is measured by the average results of the first 10

timesteps.

temporal baseline CTN model. This indicates the advantage of the RKTU structure in the long-

term prediction. (5) The CNDEp-E slightly outperforms the CNDEp-R in the long-term prediction.

A similar observation is made by comparing two versions of CNDE-based methods.

In Figures 6 and 7, the results for the TGV are presented. A better performance of the model

developed here is indicated via the SSIM and dissipation differences. Several observations aremade:

(1) The CNDE-based methods using refinement perform much better than CNDEp-based methods

and DCS/MS. Moreover, the performance of the CNDEp-based methods becomes worse than the

baseline DCS/MS after the fifth timestep. This is because of the variability of TGV data over larger

time intervals (δ = 2 s) and the testing data are very different from the initial data point. This causes
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Fig. 4. Change of SSIM values produced by different models from the 1st (7 s) to 20th (7.4 s) timesteps in the

FIT dataset.

Fig. 5. Change of dissipation difference by different models from the 1st (7 s) to 20th (7.4 s) timesteps in the

FIT dataset.

Fig. 6. Change of SSIM values produced by different models from the 1st (80s) to 20th (120s) timesteps in

the TGV dataset.

Fig. 7. Change of dissipation difference produced by different models from the 1st (80s) to 20th (120s)

timesteps in the TGV dataset.

the CNDEp-basedmethods to fail in capturing the correct flow dynamic without refinement. It also

indicates the advantages of the refinement method for adjusting the state of flow data in the long-

term prediction. (2) The CTN almost fails to capture the flow dynamics after the fifth timestep, and

thus the CTN is not suitable for this dataset.
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Fig. 8. Reconstructedw channel by each method on a sample testing slice along the z dimension in the FIT

dataset. The reconstruction results are shown at the 1st (7 s), 5th (7.1 s) 10th (7.2 s), and 20th (7.4 s) in (a)–(f),

(g)–(l), (m)–(r), and (s)–(x), respectively.

4.3.3 Visualization. In Figures 8, the reconstructed data are shown at multiple (1st, 5th, 10th,

and 20th) timesteps after the training period. For each timestep, the slices of thew component at a

specified z value are shown. In the 1st step, both the CNDE-based methods and the baseline CTN

model yield ideal reconstruction results. This is because the test data are similar to the training

data at the last timestep. In contrast, the baseline DSC/MS [19] leads to a poor performance starting

from early time. Beginning at the 5th timestep, the CNDE-based methods perform better than the

baselines. A more significant difference is observed at the 20th timestep. All the baselines almost

fail to capture the correct flow transport pattern. The CNDE-based methods yield a much better

performance in the late stage. Similar observations are made on the TGV dataset as shown in

Figure 9.

4.3.4 Validation via Physical Metrics. The model performance is also assessed via of long-term

prediction of the turbulent kinetic energy. Figure 10 show the energies corresponding to the tar-

get DNS, and the reconstructed flow data by the baselines and the CNDE-based methods for both

the FIT and the TGV flows. The results in Figure 10(a) for the FIT dataset indicate the follow-

ing: (1) The CNDE-based methods in general perform better than the baseline method DCS/MS

and CTN. Even without using the refinement process, the CNDEp-based methods outperform the

DCS/MS and CTN models. CNDE-based methods can follow the underlying physical rule well

in the long-term prediction. (2) The performance of CNDEp-based methods becomes very poor
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Fig. 9. Reconstructedw channel by each method on a sample testing slice along the z dimension in the TGV

dataset. The reconstruction results are shown at the 1st (80 s), 5th (90 s), 10th (100 s), and 15th (110 s) in

(a)–(f), (g)–(l), (m)–(r), and (s)–(x), respectively.

Fig. 10. Change of kinetic energy produced by the reference DNS and different models in both the FIT and

the TGV datasets, respectively.

after the 8th timestep. This is because the accumulated error gets amplified in every timestep. The

results in Figure 10(b) yield similar conclusions.

5 SUMMARY AND CONCLUDING REMARKS

A novel SR methodology, termed CNDE, is developed to reconstruct high-resolution flow data

in spatial and temporal fields. The model is used in the setting of unsteady, incompressible,
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Newtonian turbulent flow under spatially homogeneous conditions. The SR method is to generate

the high-resolution DNS field from low resolution, LES data. An RKTU is developed to leverage the

physical knowledge embodied in the Navier–Stokes equation to capture the spatial resolution and

the temporal dynamics of the flow. A TEL is constructed to capture long-term temporal dynam-

ics. A degradation-based refinement method is developed to adjust the reconstructed data over

time by enforcing the consistency with physical constraints. The performance of the model is as-

sessed in the setting of two flow configurations via flow visualization and statistical analysis. The

results demonstrate the superiority of the CNDE for spatio-temporal reconstruction of the flow.

The model’s constituents, the RKTU and the refinement methods can be used as building blocks

to enhance existing deep learning models.

Despite its demonstrated capabilities, there are two limitations associated with the CNDEmodel

in its current form. (1) The CNN layers are used to estimate spatial derivatives, which can intro-

duce bias due to the approximation and due to data overfitting. (2) The method is, thus far, tailored

and appraised for specific flows. Therefore, its generality cannot be warranted for other appli-

cations; especially in the absence of sufficient DNS data. Future work is recommended to find

alternative ways to evaluate the spatial derivatives more accurately and to improve the model’s

transferability.
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